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On the use of the Galerkin method for 3D numerical
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SUMMARY

A linear three-dimensional hydrodynamical numerical model, with the application of the Galerkin
Method for the vertical dependence, is here presented. The spherical coordinate system is used, in
order to allow large-scale simulations. The equations and mathematical development of the model are
shown in detail, together with the boundary and initial conditions, and the sequence of equations’ solu-
tion. The model is applied to the South Atlantic Ocean, for estimating typical seasonal circulations, and
the results are summarized in maps of currents at surface and 1000m depth, and in transport values of
the Brazil Current between 30◦S and 40◦S. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last few years, several ocean general circulation models (OGCM) were implemented
in the study of oceanic dynamical processes. This may be atributted to the continuous im-
provement of observations and computational resources, which allow the use of more re-
alistic bathymetry, better parametrizations, �ner grid resolutions, corrected surface wind
values, etc.
Since the pioneer works of Sarkisyan (in: Bryan [1]) and Bryan [1], several large-scale

ocean numerical models were proposed; at present, four types of models are used, with di�er-
ences in the vertical solution of the basic equations: models with linear vertical z coordinate,
with either constant or variable vertical grid spacing (e.g. Reference [2]); models with sigma
vertical coordinates, which are normalized according to topography (e.g. the Princeton Ocean
Model POM; Reference [3]); isopycnal layer models, where the ocean is reduced to a pack of
layers, each one with constant potential density values (e.g. the Miami Isopycnic Coordinate
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Ocean Model MICOM; Reference [4]); and spectral models, where the unknown variables are
represented through expansions with given basis functions for the vertical dependence (e.g.
Reference [5]).
The model presented here uses the spectral solution together with the Galerkin method. The

dependent variables (velocity components u and v, density, etc.) are represented by expansions
as products of 2D coe�cients (which account for the horizontal and time dependence) and
basis functions (for the vertical variations). These expansions are inserted into the hydrody-
namic equations, which are then multiplied by the respective basis functions and vertically
integrated, from the surface to the bottom. The �nal model equations allow the computations
of the horizontal variations and time evolutions of the 2D coe�cients and the recovering of
the 3D �elds through the initial expansions.
Davies [5; 6] presented the formulation of a three-dimensional wind-induced model using

the spectral method and compared the results of this formulation against the direct �nite
di�erence solution in the vertical (Reference [7]); applications of the spectral methodology in
strati�ed seas are given in Davies [8].
At present, however, only few publications related to large-scale ocean circulation are based

on the spectral solution, perhaps due to the complexity of its formulation or the heavy com-
putational e�ort that is necessary when the number of degrees of freedom (modes) is large.
On the other hand, this solution has two important advantages: considering that the equations
are vertically integrated, the three-dimensional problem is reduced to a set of two-dimensional
ones; besides, the dependent variables may be computed at any level of interest (although
with an accuracy that depends on the choice of suitable basis functions, among other factors).
The objective of this work is to present a general circulation ocean model of the South

Atlantic Ocean based on the spectral solution. This �rst version of the model considers only
the linear terms of the basic hydrodynamical equations and the density �eld is made time-
invariant. The model is forced by seasonal winds (constant in time). Note that the spectral
solution may also be used in full non-linear thermodynamic problems, with variable winds
and radiational e�ects, but that requires more computational resources and shall be presented
in future researches.
In the next sections the model mathematical development will be presented, followed by

some numerical experiments and a discussion about the obtained results.

2. THE MODEL DESCRIPTION

This model is based on Davies [6] formulation, using spherical coordinates, for large-scale
oceanic simulations. In this �rst version of the model, the non-linear terms were neglected,
which greatly simpli�es the mathematical formulation. Although the linearization removes
important e�ects such as meso-scale eddies associated with strong currents, it allows the
investigation of the linear response of the ocean to the atmospheric forcings, pointing out the
contribution of linear e�ects in the oceanic processes.
Another simpli�cation of this model is the assumption of a time-invariant density �eld,

eliminating thus the equations for temperature, salinity and density—and restricting the number
of unknowns to three: the two horizontal velocity components and the vertical displacements
of the density surfaces. This simpli�cation considerably reduces the computational time to
reach the model spin-up, since only mechanical forces are considered (the wind stresses),
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being suitable when the interest is restricted to the wind-driven currents and does not include
the thermohaline circulation.
Note that the spectral solution may also be used in full non-linear thermodynamic problems,

with variable winds and radiational e�ects, but that requires more computational resources and
shall be presented in future researches.

2.1. Model formulation

The model is composed of the prognostic equations
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where u, v and w are the current components (to east, north and downward, respectively),
� and ’ are respectively, longitude and latitude (positive to east and north), z is the depth
(positive downward), t is the time, R is the Earth radius, � is the angular velocity of the
Earth rotation, g is the gravity acceleration, � is the sea water density, �� is the mean sea
water density, p is the pressure, N is the coe�cient of vertical eddy viscosity and Nh is the
coe�cient of horizontal eddy viscosity. Tu and Tv are the horizontal turbulent di�usivity terms,
de�ned by
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Representing the vertical velocity w as the displacement of a density surface �, w can be
written as

w=−@�
@t

(7)

Integrating the hydrostatic relationship (4) from the surface to the bottom, results in

p=pa + �0g�0 + g
∫ z

0
� dz′ (8)
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where pa is the atmospheric pressure, �0 and �0 are the density at the sea surface and the
sea surface height, respectively. Inserting the expressions of Tu; Tvw and p ((7)–(8)) into the
basic equations (1)–(4), the model equations become

@u
@t

− 2� sin’v=
−1

��R cos’
@pa

@�
− g�0
��R cos’

@�0
@�

− g
��R cos’

@
@�

[ ∫ z

0
� dz′

]

+
@
@z

[
N

@u
@z

]
+

Nh
R2 cos2 ’

@2u
@�2

− Nh sin’
R2 cos’

@u
@’

+
Nh
R2

@2u
@’2

+
Nh
R2

(
1− sin2 ’

cos2 ’

)
u− 2Nh

R2
sin’
cos2 ’

@v
@�

(9)

@v
@t
+ 2�sin’u=

−1
��R

@pa

@’
− g�0
��R

@�0
@’

− g
��R

@
@’

[ ∫ z

0
� dz′

]

+
@
@z

[
N

@v
@z

]
+

Nh
R2 cos2 ’

@2v
@�2

− Nh sin’
R2 cos’

@v
@’

+
Nh
R2

@2v
@’2

+
Nh
R2

(
1− sin2 ’

cos2 ’

)
v+

2Nh
R2

sin’
cos2 ’

@u
@�

(10)

and

@
@t

(
@�
@z

)
− 1

R cos’

(
@u
@�
+

@(v cos’)
@’

)
=0 (11)

Expressions (9)–(11) are thus the basic model’s equations, for the unknowns u, v and �.
The model equations are subject to boundary conditions at the surface (z=0), corresponding

to the wind stress �s, with wind components F0 and G0 related to the wind velocity W and
its components W� and W’:

F0 = cD�aWW� (12)

G0 = cD�aWW’ (13)

where �a is the air density and cD is the drag coe�cient. The values adopted for �a and cD
were extracted from Hellerman [9].
The bottom boundary conditions (at z= h) correspond to the linear relation between the

bottom stress and current components

FB = k�u (14)

GB = k�v (15)
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where k is the bottom drag coe�cient; additionally, at the bottom

�=0 at z= h (16)

d(z − h)
dt

=0 at z= h (17)

The spectral solution (in conjunction with the Galerkin method) involves the expansion of
the dependent variables u, v and � in terms of products of 2D coe�cients and basis func-
tions and the insertion of these expansions into the basic equations. Afterwards, the resulting
equations are multiplied by the respective basis functions and vertically integrated. In or-
der to avoid di�erent vertical integrations at each grid point (due to di�erent values of the
depths h), the vertical interval (0; h) is replaced by the constant interval (a; b), through a
sigma coordinate transform:
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z
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Using the above expression, the partial derivatives involving the spatial coordinates become
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from which expressions can be obtained for @2=@�2 and @2=@’2.
The dependent variables u, v and � are then expanded in terms of coe�cients Ar , Br and

Cr (which account for the horizontal and time variations) and basis functions f and  (for
the vertical variations), as follows:
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where M is the number of terms used in the expansions.
According to Davies [6], the density �eld � and the coe�cient of vertical eddy viscosity N

can also be expanded similarly, in terms of 2D coe�cients Dr and Er and basis functions �
and �:
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Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:881–893



886 J. HARARI AND E. GIAROLLA

N (�; ’; �; t) =
M ′∑
r=1

Er(�; ’; t)�r(�) (26)

where M ′ is the number of terms used in the expansion of N , which can be equal or not
equal to M .
In the above expansions, f,  , � and � are functions chosen beforehand so that Dr and

Er are determined by the adopted values of � and N , respectively.
The �nal form of the continuity equation (11) is obtained after inserting the expansions,

multiplying by the basis function ( ) and integrating in the vertical (from a to b), so that
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The same procedure is applied to the equations for the horizontal components of the velocity
((9)–(10)), resulting in the equations for Ar and Br
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Note that Ar , Br and Cr become the unknowns of the �nal model equations (27)–(29).

2.2. Initial conditions

The simulations start from the rest, so

Ar =Br =Cr =0 at t = 0 (30)

The inclusion of the density �eld in the model, at t=0, is made through the computation
of the values of Dr: the expansion for the density (25) is multiplied by �s and integrated
from a to b, which gives
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The above equation, solved in matrix form with a given density �eld �, computes the values
of Dr (which were kept constant in the model processing).
With a similar expression, Er is determined from the given coe�cients N :
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2.3. Boundary conditions

In the model, the sea surface elevation �0 = �(�; ’; �= a; t) is prescribed at all the open bound-
aries.
The vertical pro�les of u and v are also prescribed at the open boundaries, with the cor-

respondent coe�cients Ar and Br computed by solving the following equations in matrix
form
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At the closed boundaries, ‘no-slip’ conditions are used, with Ar =0 at eastern limits and
Br =0 at northern ones.
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2.4. The sequence of the equation’s solutions

The grid used in this model is Arakawa’s ‘C’ grid, so that equations (27)–(29) are discretized
with �nite di�erences forward in time and centred in space. For the time integration, the
‘forward–backward’ numerical scheme is used.
Initially, the model starts from the rest, so the initial conditions (30) are applied. The values

of coe�cients Dr and Er are computed through the given �elds of � and N , by using relations
(31)–(32).
The evolution in time of the model equations is then performed with the following steps:

1. The equation of continuity (27) renews the values of Cr . An ‘horizontal �lter’

C ′(i; j) = �C(i; j) + �[C(i − 1; j) + C(i + 1; j) + C(i; j − 1) + C(i; j + 1)] (35)

�+ 4�=1 (36)

is applied at each time step, in order to avoid numerical instabilities.
2. The model forcings are speci�ed: the wind components and the atmospheric pressure
at the sea surface. The values of the sea surface elevations and vertical current pro�les
at the open boundaries are then prescribed, given the correspondent values of �0 and
coe�cients Ar; Br (through (33) and (34)).

3. The wind stresses are computed with the bulk formulation (12) and (13) and the bottom
stress with the linear law (14) and (15).

4. Equation (28) renews the values of Ar .
5. Equation (29) renews the values of Br .
6. The computed �elds of Ar and Br can be �ltered by (35) and (36), but not necessarily
at each time step.

7. After the time evolution of coe�cients Ar , Br and Cr , the dependent variables u, v and �
can be computed at any depth, by expansions (22)–(24); the sea surface elevation is
also computed, as the value of � for �=0.

3. MODEL SETTINGS AND EXPERIMENTS

Fourth-order B-Splines functions were used as basis functions f,  , � and �. The B-Splines
are polynomious, di�erent from zero only in a �nite interval of the domain, centred at points
named ‘knots’. Davies [6] demonstrated that this basis functions are particularly suitable for
internal shear reproduction and have an additional advantage of �exibility for higher resolution
in any layer, such as the surface or the pycnocline. The number of terms in the expansions
were de�ned as M=M ′=6. The vertical domain [a; b] was set to [0; 1], and the knots of the
basis functions were equally distributed at �=−1:00; −0:66; −0:33, 0.00, 0.33, 0.66, 1.00,
1.33, 1.66 and 2.00.
The vertical pro�le adopted in this work has the surface layer from surface to the 26.20

potential density surface, the thermocline from surfaces 26.20 to 27.50 and the bottom layer
from 27.50 to 29.00 surfaces. The chosen pro�les of the coe�cient of vertical eddy viscosity
had values of 1000cm2 s−1 at the surface layer, 10 cm2 s−1 in the thermocline and 100cm2 s−1

at the bottom layer; according to Davies [6], this structure of N represents the realistic high
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vertical di�usion at the surface and the minimum vertical transfer of momentum through the
pycnocline.
The model was applied to the South Atlantic Basin (5◦S–40◦S, 60◦W–20◦E), with a hor-

izontal resolution of 0:5◦ × 0:5◦. The ocean topography was extracted from the ETOPO5
database, and a 1000 m cuto� depth was chosen in the experiments, because of the inter-
est only in large-scale circulation. Two experiments were performed, for summer and winter
mean conditions. The three-dimensional summer and winter mean densities were prescribed
based on values given by Gorshkov [10], and the mean seasonal values of surface winds and
atmospheric pressure were extracted from Hellerman [9] and Van Loon [11], respectively. At
the open boundaries (northern and southern boundaries of the basin), dynamic height values
from Dephant [12] together with altimetric observations from Carton [13] were used to de-
�ne sea surface height values; and current pro�les at the open boundaries were derived from
Meehl [14] at the surface and Gorshkov [10] at greater depths.
The other model’s parameters were adjusted after preliminary experiments, with values of

the bottom drag coe�cient k=5 cm s−1, the horizontal eddy coe�cient N=4× 108 cm2 s−1
and the frequency for spatial �ltering of the �elds Ar and Br , corresponding to once in every
30 time steps. The time step adopted was 60 s.

4. MODEL RESULTS

Figure 1 shows the model currents at the surface for the experiment considering mean summer
conditions. To obtain this �eld, the currents values at surface were recovered using the 2D
coe�cients Ar and Br in the expansions for u (22) and v (23), considering �=0. In this
�gure, the currents represent the linear response of the ocean to the atmospheric mechanical
forcing correspondent to the wind stress. The absence of mesoscale eddies associated with

Figure 1. Mean summer horizontal currents at surface.
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Figure 2. Mean winter horizontal currents at surface.

the currents �ow is noticeable, obviously due to their strong non-linear characteristics, which
were excluded in this version of the model. The main known dynamic features in the South
Atlantic captured by the model are the Brazil Current, �owing southward close to South
America, with a recirculation cell, and the Benguela Current, �owing northward close to
Africa, within another recirculation cell.
The mean values of Brazil current vary from 8 cm s−1 at 30◦–31◦S to 17 cm s−1 at

35◦–36◦S. The southward transport of the Brazil Current was estimated using values of
mean velocity from 0 to 500 m depth, in a zonal section of six o�shore grid points (ap-
proximately 250 km). Values of 7 Sv were obtained for latitudes between 37:5◦S and 38◦S
(1 Sv=106 m3 s−1). Garzoli and Bianchi [15] estimated the mean value of 10 Sv in this area,
from inverted echo sounders data (November 1984–June 1985), using the 800 m depth as
level of reference.
Figure 2 shows the model results for mean winter conditions. In this season, a weakening

of the wind systems over the South Atlantic occurs, with a consequent weakening of the
currents at the basin scale. The Brazil Current estimated at 30◦–31◦S is 5:5 cm s−1 in this
case, and increases to 8 cm s−1 at 35◦–36◦S. The transport estimated at 37:5◦–38◦S is 5:5Sv,
a half of the 11 Sv value obtained by Garzoli and Garrafo [16] from inverted echo sounders
from June 1985 to March 1986.
The currents at 1000m depth were also recovered from the expansions for u and v, using the

calculated values for Ar and Br , and the level � equivalent to 1000 m depth (Equation (18)).
The Brazil Current and Benguela Current are present at the 1000 m depth level, both in
summer and winter results (Figures 3 and 4), although with much less intensities than at the
surface. The Brazil Current, in summer and winter, has values of about 8 cm s−1 in almost all
its extension.
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Figure 3. Mean summer horizontal currents at 1000 m depth level.

Figure 4. Mean winter horizontal currents at 1000 m depth level.

5. FINAL REMARKS

In this work, the formulation of an ocean circulation model, based on the spectral method
for the vertical dependence of the variables, was presented. The basic equations are written
in spherical coordinates, in order to allow large-scale simulations, covering the ocean basins.
Although the simpli�cations made, neglecting the non-linear terms and considering the

density �eld time-invariant, the main features of the South Atlantic gyre were reproduced by
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the model, especially the Brazil and Benguela Currents, o� the coasts of South America and
Africa.
Finally, the adopted formulation is an e�ective alternative on general circulation ocean

models, and the modelists are encouraged to include the non-linear terms and the equations
of temperature, salinity and density, in order to perform more realistic simulations.
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